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The initial-value problem for linearized perturbations is discussed, and the 
asymptotic solution for large time is given. For values of the Reynolds number 
slightly greater than the critical value, above which perturbations may grow, 
the asymptotic solution is used as a guide in the choice of appropriate length and 
time scales for slow variations in the amplitude A of a non-linear two-dimensional 
perturbation wave. It is found that suitable time and space variables are ~t and 
s*(z + a,,.t), where t is the time, x the distance in the direction of flow, E the growth 
rate of linearized theory and ( - a,,.) the group velocity. By the method of multiple 
scales, A is found to satisfy a non-linear parabolic differential equation, a 
generalization of the time-dependent equation of earlier work. Initial conditions 
are given by the asymptotic solution of linearized theory. 

1. Introduction 
We consider an incompressible viscous fluid in steady motion at a Reynolds 

number R close to the critical value R,, above which small velocity perturbations, 
or vorticity waves, may be amplified. If their amplitude becomes too large, a 
non-linear theory is required in order to  follow the evolution of such perturba- 
tions and, ten years ago, Stuart (1960) suggested that the development could be 
treated by means of an expansion in powers of (R - R,) or of some parameter close 
to that Reynolds number difference. After some analysis it was deduced, amongst 
other results, that the time-dependent amplitude (A,)  of the leading-Fourier 
mode of the expansion satisfied the non-linear ordinary differential equation. 

an equation whose validity for such systems was originally conjectured by Landau 
(1944). From this equation a number of inferences were drawn about the be- 
haviour of nearly monochromatic waves in parallel shear flows. 

Specifically Stuart’s paper was concerned with plane Poiseuille flows in an 
infinite channel, and subsequently the ideas were extended and assessed 
mathematically by Watson (1960, 19621, Eckhaus (1965), Pekeris & Shkoller 
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(1967, 1969), Reynolds & Potter (1967a), Ellingsen, Gjevik & Palm (1970), 
Davey & Nguyen (1971) and others. Moreover, much related work has been done 
on the rotating-cylinder and BBnard mechanisms of instability; but relatively 
brief reference will be made to that work here, since our main concern is with 
non-linear vorticity waves propagating on parallel, or nearly parallel, shear flows. 

It is known from the experiments of Davies & White (1928) and others that in 
plane Poiseuille flow turbulence of some kind can exist at  Reynolds numbers 
(based on half the channel width and on the maximum velocity) as low as 1000 
or thereabouts, whereas the linearized theory of instability (Thomas 1953) gives 
a value of R, of about 5780. Consequently the linearized theory gives results 
radically different from those of relevant experiments. Meksyn & Stuart (1951) 
suggested that, even for R < R,, non-linear effects might provide a threshold 
amplitude above which velocity perturbations could grow and stimulate tur- 
bulence; their approximate theory, which yielded an amplitude-dependent 
critical Reynolds number as low as 3000, was at  least partly successful in pro- 
viding support for this idea. The later work, which pivots around equation ( l . l ) ,  
provides a means of making an assessment of Meksyn & Stuart’s suggestion in 
a more rational way, since the approximations leading to (1.1) are really under 
better control. The value of k, is known from linearized theory; Pekeris & Shkoller 
(1967) and Reynolds & Potter ( 1 9 6 7 ~ )  provided the vital calculations of the 
coefficient k, ( > 0 )  of (1.1). Their results showed conclusively that, at  least for 
small values of R, - R, there does exist a threshold-amplitude instability 
phenomenon for R < R,. This principle may be regarded as established, though 
far more work is required to give details of the amplitude-depended critical 
Reynolds number. In  summary, therefore, there is a class of problems, typified 
by plane Poiseuille flow, for which linearized theory provides a sufficient con- 
dition for instability, in that the flow is unstable for R > R,; however, the con- 
dition is not necessary, since non-linear effects may provide instability for 
R < R,. 

Related, but even more difficult, problems exist in Hagen-Poiseuille flow and 
in plane Couette flow, since in both cases linearized theory gives no critical 
Reynolds number, though turbulence can certainly occur. First, but not wholly 
successful, attempts on these two problems have been made by Ellingsen et aZ. 
(1970) and by Davey & Nguyen (1971) respectively. (The difficulty in interpreta- 
tion of these two papers lies in the fact that, with no value for R,, no parameter 
seems to exist, for small values of which the amplitude equation can be given 
reasonable justification.) 

As mentioned earlier the Stuart-Landau theory has also been applied to the 
calculation of the amplitude of Taylor vortices between rotating cylinders, and 
of the associated required torque. In  this case the coefficients are of such signs 
that (1.1) yields a growth from small amplitudes to an equilibrium state. The 
first study (Davey 1962) was structural and non-rigorous, as was the later work 
of Reynolds & Potter (1967 b )  to higher order in amplitude. A rigorous theory was 
provided by Velte (1966), while Kirchgassner & Sorger (1969) described a related 
method of determining the structure of the Taylor-vortex flows. These papers 
were successful in providing estimates of the torque in good agreement with 
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experiment for a range of speeds above the critical value. However, as Coles 
(1965), Krueger, Gross & Di Prima (1966) and Di Prima & Grannick (1969) have 
pointed out, there exist difficulties in applying such theories to the case of the 
cylinders rotating in opposite directions. 

The aim of the present paper is to examine afresh the problem of plane Poiseuille 
flow, in order to make a better evaluation of the details of the evolution of waves 
in that case. In  particular we wish to know the behaviour of wave systems which 
develop in both space and time, in contrast to the work of Stuart (1960) and 
Watson (1960), which is concerned with the evolution of time or spatially periodic 
waves, and in contrast to the work of Watson (1962), which is concerned with the 
evolution in space of time-periodic waves. Thus our object is to obtain a 
generalization of (1.1). In  this sense our aim is similar to that of Di Prima, 
Eckhaus & Segel (1971), though the methods used are quite different. In  fact 
two methods will be used here, both different from that of Di Prima et al. (1971), 
and they bring us to an equation which we believe to be an appropriate generaliza- 
tion of (1.1). The arguments used are especially relevant to  plane Poiseuille 
flows and other ‘parallel’ flows. They are inappropriate to, or at  any rate far 
less relevant for, the rotating-cylinder problem mentioned earlier. 

We can see reasons for this by looking at the flow from two points of view. 
First, we note that experiments on Taylor vortices are usually carried out on 
fluid confined between two concentric cylinders of radii rl and r2 of finite length I 
and bounded at the top and bottom by planes or a free surface. In certain circum- 
stances, involving high Reynolds numbers, substantially different values of rl 
and r2, substantially different angular velocities of the cylinders and/or suf- 
ficiently sma11 values of l /(rl  - r21, it  is possible that the Ekman boundary layers 
induced near these plane surfaces can exert an important effect on the steady 
flow of the confined fluid. Indeed this may be a partial cause for the difficulties 
mentioned earlier in applying the non-linear theory to flows between counter- 
rotating cylinders. It is reasonable, however, to expect that these boundary 
layers near the plane ends have only a small effect on the main flow properties 
when Davey’s theory gives an adequate description of Taylor vortices, namely 
between the first (Taylor) and second (wavy-vortex) stability boundaries, at 
moderate values of the Reynolds number, and when the cylinders are long 
( 1  9 1r1-r21) with angular velocities in the same sense. Then we can apply the 
theory for infinite cylinders, subject only to the requirement that the axial wave- 
length 2n/a be chosen to make the axial velocity zero at  the end planes, and 
therefore to be an integral fraction of 1. By allowing the amplitude \All of the 
disturbances to vary slowly with axial distance we are, in effect, allowing a 
to be a slowly-varying function of I All, which contradicts the requirement that 
a1/2n- be an integer. Experiments (e.g. Coles 1965) reveal typically 20-30 Taylor 
cells between the plane walls, and their number does not appear to change easily 
near the first stability boundary. The paper by Coles (1965) shows one example 
of a change occurring in the number of cells, but it is through an asymmetric 
disturbance ;more over, flow conditions are near to the second stability boundary, 
which separates the Taylor-vortex r6gime from that of wavy vortices. 

Secondly, the spatial re-cycling of the flow around the cylinders in the Couette 
34-2 
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problem means that azimuthal evolution of perturbations may largely be ignored 
since the flow builds up to a steady state. In  the plane Poiseuille problem, on 
the other hand, there is no re-cycling, and one is concerned with evolution over a 
long spat8ial range. These remarks, it is hoped, set the scene for our analysis. 

2. Linear theory for wave systems 
Let us consider Poiseuille flow under pressure between two parallel planes, 

which are set a distance 2h apart. In  laminar undisturbed flow, a uniform pressure 
gradient produces a velocity distribution which is independent of the streamwise 
co-ordinate and has its maximum value U, a t  the centre of the channel. In  the 
following analysis, the reference length is h, the reference velocity U, and the 
reference time h/U,. We let x denote the co-ordinate parallel to the planes and z 
the co-ordinate normal to them. The corresponding velocity components are u 
and w while @ is the stream function and t is the time. 

The governing differential equation of the two-dimensional motion is 

where 5 = - V2$, ( 2 . 2 )  

R = U,h/v is the Reynolds number and v denotes the kinematic viscosity. In  
undisturbed laminar flow, the motion is parallel to the planes and is given by 

z1 = a@l/az = 1 - - z .  ( 2 . 3 )  

A bar above a symbol denotes a mean with respect to x,  while the suffix 1 is used 
to denote undisturbed laminar flow. 

In the papers of Stuart and Watson the disturbances to (2.3) which they discuss 
have the form of travelling waves, which are periodic in x with wavelength 27r/a 
independent both of x and of the disturbance amplitude. However the criticism 
can be levelled at  this approach that it is too limited in restricting attention to 
monochromatic waves since it does not allow for a more natural development of 
a wave system out of some initial state. For example, let us consider the pair of 
waves 

8 cos ax + E cos a( 1 + 6)  x, (2.4) 

which add to give 2E cos a( 1 + 46) x cos 4asx. (2.5) 

If 6 is small then (2 .5)  can be considered as a periodic wave of wavelength 
.%/a( 1 + 48) whose amplitude 2~ cos 4aSx varies slowly with x. Moreover, if 
cosa(l+&Y)x is expanded for small 6, the wavelength of cosm is incorrect, 
and the wave evolves ‘out of phase’. We wish t o  develop a formulation of the 
non-linear instability problem which allows for these properties. 

As an essential preliminary to such an analysis, however, let us consider how 
the linearized solution evolves when R is greater than its ‘critical’ value Re, which 
is 5780 according to linearized theory. Suppose at t = 0 we make a small initial 
disturbance which is confined within a finite distance of the origin. So long as the 
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disturbance remains small, the perturbation stream function Fl satisfies the 
linear equation 

V 2 T 1 + 2 2  ay = R- 1V4F1, 
ax ax 

with boundary conditions that Tl, aF,/ax vanish at  z = k 1, and that ?i?, -+ 0 
as 1x1 -+ m for all finite t ;  as an initial condition Fl is given to be an infinitely 
differentiable function of x, x a t  t = 0. A formal solution can be obtained by 
means of the Fourier-Laplace transform 

A 

~ , ( z ;  a, s, R) = fom e-stdt j  a e-iaxq At ,  232; R) dx, (2.71 
- w  

A 

where the line s, = y lies to the right of any singularities of Yl. 
A full study of (2.6) is not intended, and is indeed a formidable task; instead 

we shall proceed intuitively (and possibly incompletely). For any fixed a the form 
of the outer integrand of (2.8) depends upon the branch points and upon the 
poles of the inner integrand q1. Branch points would occur if initially Fl were 
not completely smooth, and may occur because of some intrinsic property of 
(2.6) as yet unknown. We shall, for the present, exclude them from consideration. 
At a pole, (2 .6)  has an eigensolution which may be found by solving 

h A 

- ia (( 1 - z2 - 2) (9; - a2Y,) + 2$,] + R-l{$P - 2a2Y; + a",} = 0, (2.9) 

subject to $,( f 1) = $!2pI( f 1) = 0, primes denoting differentiation with respect 
to z. This is the Orr-Sommerfeld eigenvalue problem, and we require non-trivial 
solutions with eigenvalues &(a) for a given R. 

There is a critical Reynolds number, R,, such that for all R < R,, the real part 
8,. of each eigenvalue is less than zero whatever the (real) value of a;  consequently, 
in this range of Reynolds number, all the poles lie to the left of the imaginary 
axis of s so that, as t + 00, their contribution to the outer integrand of (2.8) 
vanishes. However, for any given value of a sufficiently close to a,, which is the 
critical wave-number for neutral stability at R = R, and is 1-02 approximately, 
one pole is known to move to the right of the imaginary axis as R- R, becomes 
positive. For R > R, the maximum value of the real part of s occurs at, say, 
a = a,, where a, + a, as R -+ R,. For some R > R,, and for a close to am we 
may write 

s(a) = - i a , c m + i i i , , ~ - i i , ~ 2 + i i 3 ~ 3 + O ( ~ 4 ) ,  (2.10) 

where P = a - a,. Moreover, c,, ii, and ii3 are complex numbers, while a,, is a 
real number and all remain finite as R -+ R,. In  addition we note that cmi, the 
imaginary part of c,, is proportional to (R - R,) as R -+ R,, and that ii2, > 0 
when R is close to R,. 

For given a and R the residue at  a pole gives the appropriate eigenfunction. 
And for the situation in which (2.10) is valid, the residue gives an expansion 
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about a = a, of the eigenfunction of ( 2 . 9 ) ;  if we assume the residue to be regular 
it may be written 

(2 .11)  

where A, is a complex function of z independent of a. 
The general form for Tl is 

T~ = & Sy,exp [iax + s(a) t ]  ~ ( z ;  a,  R) da. (2.12) 

When t + co and a is real the maximum value of the modulus of the integrand of 
(2.12) occurs at a = a,, and the integrand is then equal to 

( 1 / 2 r ) A o ( z )  ~ X P  [iam(x-cmrt) + amcm,tl, (2 .13)  

which suggests that TI is dominated by an exponentially growing factor when 
R > R, and t is large. This deduction may be spurious, however, since what is 
really significant is the stationary value of [iax + s(a) t ]  as a function of a, and 
this value will normally occur off the real axis. If it occurs at B and s,(@ = p 
then a path of integration may be chosen to pass through ol and the resulting 
form of Tl is dominated by the factor ep t  as t + a. Clearly p < arncm6 so that 
the exponential factor cannot exceed earnhit. Moreover, B is a function of x and t 
so that strictly TI is not normally periodic in x. 

In  order to  obtain some details let us examine the case when lx+E,,t( < la2tl 
for then (2 .10)  may be used to find the value, B, of a which makes [iax+s(a) t ]  
stationary. We find 

i 3cc x+a,t 2 x+a,,t 3 a: = a r n + j & C + B 1 , t ) - - 3  2 2 c c 2 ( v )  + O ( T )  - (2 .14)  

Then the method of steepest descents yields 

A e i B  
Yl N - exp [iarn(x- c,t)] exp [ - (x + Elrt)2/4ii2t] 

(27T)B 
\ I  

(2.15) 
[Ao+i[(x+cc1,t)/2Z2t] Al+0[(x+cclrt)/2a2tI2] 

X I 2a2tl+ I 1 - (3Z3i/Z2) [(x + Zl,t)/2cc2 t ]  + O[(x + Z1,t)/2cc2t]21t’ 

where 8 is the direction of steepest descent and terms O((x + C1,t)/2Z2tf3 have been 
omitted from the exponent of the exponential function in (2 .15) .  The leading 
term of‘ (2.15) has also been obtained by Benjamin (1961) and Gaster (1968a, b )  
in another context. 

It can be seen that the amplitude of the disturbance reaches a maximum when 
I(x+Zlrt)l Q ] Z 2 t \ .  Indeed the expression (2 .15)  shows that the ‘wave system’ 
moves with the group velocity, which is (--ZIT) in the present problem. If 
I (x + ?i1,t)2/4E2 tl becomes large the disturbance diminishes, since Z2, > 0. 

An important deduction from (2 .15)  for the present work is that the disturbance 
is not periodic in x but has aperiodic properties. Thus some modification of 
Stuart’s (1960) paper is required, since a monochromatic wave was assumed 
there. Stuart considered a time scale c i l  for growth of the disturbance, ci being 
the imaginary part of a complex wave velocity not necessarily restricted to the 
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case of maximum amplification. For a wave system propagating a t  the group 
velocity ( - Til,.), the implication of (2.16) is that the length scale also should vary 
on the scale crl. If this can be done for the non-linear case, it implies a slow varia- 
tion of amplitude and wavelength of non-linear waves, and negates the assump- 
tion of monochromatic waves. 

Rc R R 

FIQKRX 1. Schematic view of neutral wave. 

I 
I 
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I 
I 
I 
I 
I 
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a1 a *,t a2 a 
FIGURE 2. Amplification rate for R > Re. 

Before going on to discuss the non-linear theory, we shall derive some basic 
formulae of linearized theory. The sketches in figures 1 and 2 illustrate the 
properties of ac, and act that we wish to exploit, particularly near to R = B,. 
Consider first a perturbation at a Reynolds number R, and a wave-number a. 
Then the eigenvalue s(a) is imaginary and equal to - ic,ac while the eigenfunc- 
tion may be defined as $l(z) where 

$1 = lim A&) 
R+Re 

and satisfies 

(2.16) 
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together with the normalizing condition $1(0) = 1. We now suppose that (R  - R,) 
and (a - a,) are both small and set up a double power series expansion for both 
s(a)  and P, in powers of (R  - R,) and (a - a,). We write in fact 

s(a) = -ic,a,+ial,(a-a,)-u2(a-ac)2+... +( R-R,)d,+ ..., (2.18) 

where terms of the order (a- a,)3, ( R  - RJ2, ( R  - R,) (a  - a)  have all been neglec- 
ted; furthermore a,, is real from the definition of a, while a2 is complex with a 
positive real part. Both a,, and a2 are independent of (a-a,) and (R-R,). 
Simultaneously we write 

where $lo, $11, 3h12 are independent of (a-aJ and (R-R,). The differential 
equations satisfied by qbln all have the operator of (2.17) on the left-hand side 
but are non-homogeneous. For the $lo equation, the right-hand side is 

P = $l(z)+(a-a,)llrlO(z)+(R-Rc) l lr11(z)+(0i-ac)2$,,(z)+ ... , (2.19) 

1 - z 2  4i  
a 

Since the homogeneous equation for $lo is identical with that for $l of which a 
solution is known to exist satisfying the no-slip boundary conditions, a solution 
to the non-homogeneous equation exists only if (2.20) satisfies a certain integral 
relation. In  fact we multiply (2.20) by @, which satisfies the differential equation 
adjoint to (2.17) and the same boundary conditions, as defined by Stuart (1960, 
p. 374). Then, on integrating with respect to z over the range - 1 < z < 1, we 
must get the answer zero and so 

In the same way, by considering the equation for llrll we can show that 
+1 

d l j  @(p;-a,$,)dZ 2 = -- j + l d Z  q1c.i" - za; p; + a: $,I. (2.22) 
-1 R: -1 

The relation for a2 is more complicated and the computation of $lo is required 
before the integrals can be evaluated, as the following formula shows: 

a2 J +'a (pi - a: ciz 
-1 

-iac(l - z2 -c , )  ( 2 ~ c $ l o + $ l ) + ~ ( ~  -z2+al,) ($;6-a~$10-2a,$l) 

+ 2i$1, + - [Pi - 3gV1 + 2a,(Yio - 4$10)l .  
2 = p a z [  
RC 

(2.23) 

From calculations kindly made for us by Mr R.R.Cousins of the National 
Physical Laboratory we have the values 

a,, = - 0.384, 
d, = (0.17 + 0-80i) lo-', 
CL, = 0.183 + 0.070i; 

(2.24) 

similar values can be inferred also from the papers of Nachtsheim (1964) and 
Grosch & Salwen (1968). 
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3. Non-linear theory for wave systems 
Our object here is to obtain a form of perturbation solution of (2.1) which is 

centred round the solution proportional to expia,(z-c,t), the mode which is 
neutral and has maximum ‘growth’ at R = R,. However, as we found in the 
last section, an important property of wave systems propagating at the group 
velocity is that the wave modulates in space and time with x and t having the 
same slow scale. Now Stuart (1960) used the inverse time scale 

€ = a,ci, (3.1) 

finding the time-scale for growth in the non-linear problem to be the same as 
that of the linear case. We want to capitalize on this and also to introduce the 
formal language of the method of multiple scales. We intend to expand our 
solution in powers of E ,  or, what amounts to the same thing, powers of R - R,, 
since cc R - R, when R - R, is small. It is helpful to be precise about cd and so 
we define 

8 Re s(a)  
so that ~ - - lim - B = d,,l R - R,I lR-RcI R-+R~ R-R,’ 

( 3 . l a )  

Thus from (2.18) 8 = dE,IR-R,I. On the whole we shall be concerned with the 
unstable situation in which R > R, but shall occasionally comment on the form 
taken by the governing equation when R < R,. 

Let us introduce the additional variables 

x = ex, r = E t  ( 3 4  

into the problem. This we achieve by the method of multiple scalings. In order 
to extract the short time scale ((accr)--l), we also associate t with x as (2 -c , t )  
in the following, thus dealing with the propagation of wave components at the 
wave speed c, of linearized theory. 

It is convenient to follow Stuart (1960) and write 

$ = 9o(z, x, 7 )  + 91(Z> x, 7) E + 41@, x, 7) E-l+ 9 2 @ ,  x, 7 )  E2 
+ $ z ( Z , X , 7 ) E - 2 f  ..., (3.3) 

where E = exp [ia,(x - c,t)]. Then it follows that 

6 = - ($: + € 2 d O X X )  - ($; - a2$1 + 2ia€$lX + ~ ~ $ 1 ~ ~ )  E - C.C. 

- ( ~ ~ - 4 a 2 ~ z + 4 i a s ~ 2 x + ~ 2 $ 2 X X ) E 2 -  c.c.... . (3.4) 

in which, here and in later evaluations, we have used 

a a a a a a  
ax ax ax at at ar’ 
-+--+€-, --+-+€- (3.5) 

Primes denote derivatives with respect to z. Some lengthy algebra yields equa- 
tions for the harmonic components q50, q51, $2, which are generalizations of (2.5)- 
(2.7) of Stuart (1960),  involving especially derivatives with respect to x and 7. 

has amplitude 
sf in the non-linear problem. Strictly speaking if a representative amplitude of 

Now Stuart’s (1960) work indicates that the dominant term in 
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the disturbance at t = 0 is i?, Yl = O(Et-4eEt) near the centre of the disturbance 
when t 9 1, T < 1 from (2.15) ,and so the dominant term in g1 must be 

O ( e k d e r )  near z+a,t = 0 when T < 1. 

The factor €4 fortuitously matches the order of magnitude E* required by Stuart's 
theory and the factor i? can be absorbed into the origin oft. Thus it is consistent 
to expect that the solution for T N 1 should match with the solution for t - 1 in 
the matching region t 9 1 , ~  < 1. 

A 

Following the lead of Stuart (1960) and Watson (1960) we write 

(3.6) 1 
41 = & M X ,  7 9 2 )  + E*413(X, T , Z )  + O ( 4 '  

$2 = "&, 79x1 + 0 ( B 2 ) ,  
#o = 2 - 1  32 3 + 4 0 2 ( X ,  T , Z )  + 0 ( B 2 ) ,  

where &, are explicitly independent of x, t and B. 

according to (2.19) but with a = a,; and with reference to ( 3 . 1 ~ )  this gives 
In  order to allow for the Reynolds number to vary away from R,, we expand R 

R = R,+di, '~.+0(~~).  ( 3 . 6 ~ )  

On substituting into the fundamental differential equation (2. l ) ,  together with 
(2.2) and equating like powers of E to  zero, we obta@, as a first non-trivial result, 
that 

from the coefficient of E d ;  the complex conjugate of (3.7) is obtained from the 
coefficient of E-let. The boundary conditions satisfied by gll are that 

$11 = a$ll/& = 0 at z = rt 1. (3.8) 

Hence from the linear theory of stability, with c, = lim c, and a = a,, we have 
R+Re 

$11 = A(x,T)  $l(z), (3-9) 

where A is an amplitude function to  be found. 
On equating the coefficient of E to zero we obtain two relations connecting the 

#,,, one from terms containing E2 as a factor and one from terms independent 
of E. These are 

and (3.11) 

Since 422 satisfies the same boundary conditions as &, (3.8), and the result,s of 
many numerical calculations strongly suggest that there are no complementary 
functions of (3.10) which satisfy them, we may take the solution of (3.10) to be 
unique and write it as 

4 2 2  = A2$2(z). (3.12) 
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Similarly 
$502 = I A I 2 W .  (3.13) 

In  the important case in which $l(z) is even, the solution of (3.11) satisfying 
conditions of no-slip at  z = ? 1 is given by (3.13) with 

F’(x) = s(z)-3(1-z2)SoS(z)dz; 1 = i a c n , S ’ ( ~ ; h - $ l $ ~ ) d ~ .  (3.14) 
1 

As Watson (1962) shows for A ( x , ~ )  = A(x) ,  this implies constancy of mass flux. 
The case of A(x7 7) = A(7) is now seen to be singular since, in contrast to the 
discussions of Stuart (1960) and Watson (1960) for that case, we no longer have 
the choice between constancy of mass flux and constancy of pressure gradient. 
I n  general, the latter must necessarily change. (We are indebted to Dr M. Gaster 
for a helpful comment which eliminated an error in an earlier draft.) 

Now let us consider the coefficient of d. Equating the terms proportional to 
E d  to zero we obtain 

+ A  IA 12WM - a m  + 2$2(7& - a%) - 2 $ w ;  - @$2) 

--t,F1($[-@$h) -I?’(fli-a:$l) +P”’$-,]. (3.15) 

Since the left-hand side of (3.15) contains the same differential operator as 
(3.7) and $13 satisfies the same boundary condition as gl1, it follows that a solution 
to (3.16) exists only if the right-hand side satisfies a certain integral relation, 
namely that it be orthogonal to the adjoint function Q7 which satisfies the 
equation adjoint to (3.7). On multiplying (3.15) by <D, integrating with respect to 
z from - 1 to + 1 and using the integral properties of Q, $1, obtained in $2, we 
find that for a solution of (3.15) to exist 

(3.16) 

when R > R,. [If R c R, it  is necessary to change the sign of the term d,A/d,,. 
only.] Here a, is given by (2.21), d, by (2.22) and 

+I  

-1 -1 
(3.17) 

and g is the coefficient of AIAI2 in the right-hand side of (3.15). From the defini- 
tions (2.18) and ( 3 . 1 ~ )  with a = ac it  follows that 

(3.18) 
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The imaginary part of (3.18) represents the change of wave speed for R different 
from R,. 

On setting A = e-qA,, e = aCci,  a,, = d,, = 0, and replacing 7c by iack we re- 
trieve equation (4.12) of Stuart (1960). For a variety of reasons, however, it  is 
convenient to use (3.2) and to rewrite (3.16) as 

(3.19) 

where A = e-$A,(t, x) exp (id,,etld,,). (3.20) 

[For R < R,, the E terms in (3.19) and in the exponent of (3.20) change sign.] In 
this form we have explicitly eliminated the part of the coefficient of A ,  which 
represents the change of wave speed. Thus (3.19) is our first generalization of 
the amplitude equation derived by Stuart (1960) and adumbrated by Landau 
(1944). 

If, in (3.19) we regard A ,  as a function oft and of 

X = x+al,t, (3.21) 

aA,(t,X)/at = EAl+kAlIA112, R > R,, (3.22) 

which, apart from the 'parameter' X ,  is the original equation of Stuart (1960). 
Its solution is clearly given by an adaptation of (5.2) and (5.5) of that paper, 
namely 

it takes the form 

(3.23) 

(3.24) 

in whichf2(X) and t o ( X )  are arbitrary functions of X. A sign change of the E term 
deals with R < Re in (3.22), (3.23). 

4. The neighbourhood of x = -alrt 

and the equation then has a simple general solution 
When A,  is sufficiently small the non-linear terms in (3.19) may be neglected 

A ,  = e*eCtf(x+a,,t), (4.1) 

a result which can be inferred from (3.23) and (3.24) in the limit off2smal1, which 
yields linearized theory. This solution has a number of features in common with 
the asymptotic expansion, as t -+ CO, of the original small disturbance given in 
(2.15). For example the role of the group velocity - a,, is brought out byf(x + a,,t) 
and the exponential growth of the amplitude with time by the factor ed;  more- 
over the slowly oscillating factor of (3.20) demonstrates the variability with R 
of the most favoured mode. It is clear however, from (2.15) that a more refined 
treatment than that leading to (4.1) is necessary if we are to  describe the be- 
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haviour of A near x+a,t = 0. Further examination of (2.15), especially of its 
exponential factor, suggests that an additional required variable is 6, defined by 

(4.2) 

I n  terms of 7, [ the coefficient of exp [ia(x-c,t)] in (2.15) reduces to a function 
proportional to 

5 = (x+a,t) €4 = E4X. 

€4 exp T - - 7 3 exp [ - E2/4a27] $l(z) [ 1 + O ( d ) ]  (4.3) 

when t is large, ~ , g  N 1 and R > R,. It is this form which especially suggests the 
transformation (4.2). Moreover, whereas (3.22) indicates that the variable X 
of A,(t, X )  may be regarded as a parameter in equation (3.22), it is our object 
here to allow for differentials with respect to X ,  through the scaled variable [. 

We now therefore revise (3.3) to have the $n as functions of 2, 7, 6 instead of 
x ,  7, x and furthermore to allow for the possibility of correction terms of relative 
order €4 to as suggested by (4.3); thus we generalize the expansion formula 
(3.6) to 

(4.4) 

The expansion ( 3 . 6 ~ )  for the Reynolds number remains unchanged. At the same 
time we add in the variable E in the expansions of $2, $3, and note that the error 
terms are O(&) instead of O(e2).  Further (3.5) must be modified to 

[ ::I 

$1 = ~++11(7, t, 2) + ~ + 1 2 ( 7 ,  t, 2) + e'$13(7, 5 , ~ )  + O(s2).  

a a  a a a  a a 
ax ax a7 a [ *  -+ - + €4 z, 3 --fat + E - + b ,EB - (4.5) 

On substituting into the governing equations, and equating coefficients of E E ~  
to zero we find a result analogous to (3.9), namely 

$11 = 47, El $1(4 (4.6) 

where A is now a function of 7, [ to be found. On equating the coefficients of E 

to zero, we have, in addition to (3.10) and (3.11) which yield the solutions (3.12), 
(3.13) as before, yet another equation. This is 

(4.7) 

Since the left-hand side of (4.7) has the same operator as (3.7) a solution is only 
possible if the right-hand side satisfies a certain integral condition. The presence 
of a,, on the right-hand side ensures that this is possible, whereas, if a similar 
term to $12 had been introduced in (3.6), there would have been no such possibility. 
Here, by virtue of (2.22) the condition is satisfied for all A ;  we emphasize that 
this is not fortuitous, but reflects the natural role of the [ variable. It follows 
that $1, exists and has the form 

$12 = - i(aA/at) $10(4 +A2(7, $1(4> (4.8) 

where A ,  is a function of 7, 6 to be found. 
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Turning now to the analogue of (3.15) we can see that the terms on the right- 
hand side proportional to aA/aX will be replaced by two terms; one is proportional 
to a2A/ag2 and has a coefficient which is given by ( -  i /ac@) times the integrand 
on the right-hand side of (2.23); the other is proportional to aA,/a< with a co- 
efficient identical with that of aA/ag in (4.7). Hence the generalization of (3.16) is 

(4.9) 

where a2 is the complex number given by (2.23). The reason for the appearance 
of u2 is that the method by which the various terms in the expansion of s(a) are 
evaluated in $ 2  is equivalent to the method used in this section to obtain the 
linear version of the differential equation (4.10). For a similar reason the co- 
efficient of aA/ax in (3.16) is ( -a,,,.). 

Using (3.18) and (3.20) to eliminate the ‘wave speed’ part of (d,/d,) and re- 
introducing for convenience the t and X variables from (3.2) and (4.2), we then 
obtain 

(4.10) 

X being given by (3.21). [For R < R,, the E term changes sign.] This is our second, 
and more extensive generalization of the amplitude equation of Stuart (1960). 

5. Discussion 
In  the form (4.10) our amplitude equation achieves the object, set out at  the 

beginning of $4, generalizing (3.22) to allow for X differentials. Thus, whereas 
X in (3.22) is a parameter, in (4.10) it is not. It is worth noting several special 
features of (4.10) as follows: (a)  If A ,  is a function of t  only, (4.10) reduces to the 
amplitude equation of Stuart (1960). ( b )  If X is kept constant, (4.10) reduces to 
our first generalization (3.19) but in the form (3.22). (c) As a consequence of X 
being constant, an equivalent form of (3.22) is 

which is Watson’s (1962) equation for spatially growing waves. (d )  Equations 
(3.22) and (5.1) in their linear forms together illustrate Gaster’s (1962) theorem 
that time-growing waves can be converted into spatially growing waves, in 
particular by division of the expression for E = aci by the group velocity ( - u,,.). 
( e )  There is a formal similarity between our equation (4.10) and the equation for 
thermal convection derived somewhat arbitrarily by Newel1 & Whitehead (1969) 
and with greater justification by Segel(l969) simultaneously and independently. 
In  that problem, however, the group velocity is zero, so that X there is simply 
a spatial variable. We regard the derivation of (4.10) for cases in which the group 
velocity is not zero, that is for propagating waves, as the most interesting result 
of the present paper. The crucial factor is the dominant role of the variable 
X = (x+a,,t) which, if it truly varies, plays the part assigned to it by (4.10); 
on the other hand if X is constant the relevant equation is (3.22) which represents 
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a form of our &st generalization (3.19). Of especial importance is the fact 
that the linear form of (4.10) allows solutions of the form (2.15) which develop 
from initially prescribed distributions. Because of this it is thought that the 
generalization of the amplitude equation which (4.10) affords is of significance. 

In  view of the complexity of the arguments used in the present paper, and 
especially because of the results (3.22) and (4.10) derived here, we will comment 
further on the case in which both the wave velocity and the group velocity are 
zero. Examples are BBnard convection mentioned above and the instability 
which gives rise to Taylor vortices between rotating cylinders. Clearly our 
arguments, based on (2.15), which suggest that for disturbances propagating at  
the group velocity the length and time scales should be equal for ‘slow ’ amplitude 
modulations, do not apply at  all if a,, = 0. For the B6nard and Taylor problems 
mentioned above, different length and time scales can be expected to be appro- 
priate. For example, in the BBnard problem, Newell & Whitehead (1969) and 
Segel(l969) use a length scale s-) and a time scale e-l, the latter being the growth 
rate; although Newell & Whitehead assumed this, Segel gives arguments in- 
dicating that the term 8Al/8z disappears from the amplitude equation. However, 
the reason is not the same as the one by which our equation (3.19) can be con- 
verted to the form (3.22). Both papers obtain a term proportional to 82Al/8x2. 

More recently Di Prima, Eckhaus & Segel(l97 1) have made a thorough analysis 
of the non-linear interaction of a denumerable set of discrete modes spread over 
the neighbourhood of a = a,. They find that if a, = 0 “the most dangerous 
band of wave-numbers is when a-a, = O ( d ) ,  which should be covered with 
modes spaced O(s8) apart ” and that their properties are essentially controlled 
by the same partial differential equation as that of Newell & Whitehead (1969) 
and Segel (1969). If a, $: 0 “the band of wave-number when a-a, = O(d) 
should be covered with modes spaced O(s) apart ”. The basic differential equation 
is the same as (3.16) in the present paper and, if X differentials are allowed, 
(4.10) can be derived. [The quotations given above are due to Professor DiPrima.] 

Although the derivation of (4.10) assumes R > R,, this feature is not essential. 
If R < R, the maximum ‘growth’ rate of figure 2 is negative, and the signs of 
A,  on the right-hand sides of (3.22), (4.10) need changing. Moreover, the 
mathematics given in this paper is not especially restricted to plane Poiseuille 
flow, since the replacement of (1 - z2) by 2 is easily achieved. Other flows, parallel 
or approximately parallel in some sense, may be discussed by the methods 
described here. If the problem for some ;iz yields k, < 0 in the neighbourhood of 
a = a,, then (3.23) shows that for X constant and for R > R, IA,I2 tends to the 
equilibrium value ( - s /k , )  when t -+ 00. But if k, c 0 and R < R,, (3.22) shows 
that the rate of damping is increased by the non-linear term. 

Plane Poiseuille flow is different from this, since the work of Pekeris & Shkoller 
(1967) and Reynolds & Potter (1967) shows that, for a wide range of Reynolds 
numbers centred around R, and for a range of wave-numbers centred around 
a,, the parameter k, > 0. Thus, if R > R, the rate of growth is increased by the 
presence of the non-linear term. Of more important consequence, however, is 
the fact that, if R < R,, an equilibrium solution of (4.10) is ]All2 = s/kr, at least 
when X is constant. This result gives a threshold amplitude for R < R, and a 
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in some neighbourhood of cc,, such that instability occurs for amplitudes IAl(2 
greater than (e/k,.). The amplitude equation (4.10) eventually ceases to be valid, 
since the value of (All2 increases without bound. 

The above result is, of course, well known by now in the case when alr = 0 
in (3.16) and our comments above merely extend it to the case of X constant. 
The present work is an extension of the original time-dependent amplitude 
equation of Stuart (1960) and not only because it allows the wave system to be 
spatially modulated. There is a deeper reason. This earlier theory is virtually the 
only theory of non-linear instability which can make a serious claim to be rational 
in Van Dyke's (1964) sense and therefore mathematically consistent. However, 
it suffers from the defect that the initial disturbance must be spatially un- 
modulated so that on 7 + 0, A is independent of X .  The initial infinitesimal 
disturbance that we consider in $2  is quite general and, as t --f co (with et < l), 
leads to a spatially modulated wave (2.15). This must be and can be matched to 
the solution of (4.9) as 7 -+ 0. The necessary initial condition on A is that 

where A (< 1) is a constant of the order of the original infinitesimal disturbance 
to the plane parallel flow. On adding the boundary condition IA I -+ 0 as 161 -+ co 
the determination of A satisfying (4.9) presents a well-posed problem. Its study 
is at  present under way and we hope to report on the results in the near future. 

One of us (K. S). is grateful to Prof. C. S. Davis and Prof. A. F. Pillow of the 
Mathematics Department, University of Queensland and to Prof. G. L. Von 
Eschen of the Department of Aeronautics and Astronautics, The Ohio State 
University, for hospitality while this paper was being written. The other (J.T.S.) 
wishes to thank the Mathematics Department, Rensselaer Polytechnic Institute, 
Troy, N.Y., and the Scuola Normale Superiore, Pisa, both of which he visited 
in the summer of 1970 while this paper was being completed. Especially, however, 
we would like to acknowledge the great help received from several conversations 
and discussions with Professors R. C. Di Prima and L. A. Segel and from seeing 
in advance of publication the paper by Di Prima, Eckhaus & Segel, the work for 
which was done independently and, we believe, is complementary to the present 
analysis in approaching the general problem from a different point of view. 

R E F E R E N C E S  

BENJAMIN, T. B. 1961 J .  Fluid Mech. 10, 401-419. 
COLES, D. 1965 J .  Fluid Mech. 21, 385-425. 
DAVEY, A. 1962 J .  Fluid Mech. 14, 336-368. 
DAVEY, A. & NGUYEN, H. P. F. 1971 J .  FZuid Mech. 45, 701-720. 
DAVIES, S. J. & WHITE, C. M. 1928 Proc. Rqy. SOC. A 119, 92-107. 
DI PRIMA, R. C., ECKHAUS, W. & SEGEL, L. A. 1971 to  be published J .  Fluid Mech. 
DI PRIMA, R. C. & GRANNICK, R. N. 1969 Proc. I.U.T.A.M. Symp. Stab. Cont. Syst. 

ECKHAUS, W. 1965 Studies in Non-Linear Stability Theory. Springer. 
Herrenalb. 



545 Non-linear instability of plane Poiseuille $ow 

ELLINGSEN, T., GJEVIK, B. & PALM, E. 1970 J .  Fluid Mech. 40, 97-112. 
GASTER, M. 1962 J .  Fluid Mech. 14, 222-224. 
GASTER, M. 1968a Phys. Fluids, 11, 723-727. 
GASTER, M. 19683 J .  Fluid Mech. 32, 173-184. 
GROSCH, C. E. & SALWEN, H. 1968 J .  Fluid Mech. 34, 177-205. 
KIRCHGASSNER, K. & SORGER, P. 1969 Quart. J .  Mech. Appl. Math. 22, 183-210. 
KRUEQER, E. R., GROSS, A. E. & DI PRIMA, R. C. 1966 J .  Fluid Mech. 26, 521-538. 
LANDAU, L . D .  1944 C.R. Acad. Sci. U.R.S.S. 44, 311-314. 
MEKSYN, D. & STUART, J. T. 1951 Proc. Roy. SOC. A 208, 517-526. 
NACHTSHEIM, P. R. 1964 N.A.S.A. T N  D 2414. 
NEWELL, A. C. & WHITEHEAD, J. A. 1969 J .  Fluid Mech. 38, 279-304. 
PEKERIS, C. L. & SHKOLLER, B. 1967 J .  Fluid Mech. 29, 31-38. 
PEKERIS, C. L. & SHKOLLER, B. 1969 J .  Fluid Mech. 39, 629-639. 
REYNOLDS, W. C .  & POTTER, M. C .  1967a J. Fluid Mech. 27, 465-492. 
REYNOLDS, W. C. & POTTER, M. C. 1967 b Unpublished Stanford University Paper. 
SEUEL, L. A. 1969 J .  Fluid Mech. 38, 203-224. 
STUART, J. T. 1960 J .  Fluid Mech. 9, 353-370. 
THOMAS, L. H. 1953 Phys. Rev. 91, 780-783. 
VELTE, W. 1966 Arch. Rat. Mech. Anal. 22, 1-14. 
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic. 
WATSON, J. 1960 J .  Fluid Mech. 9, 371-389. 
WATSON, J. 1962 J .  Fluid Mech. 14, 211-221. 

35 F L M  48 


